thermoscientific

Fast determination of nine haloacetic acids, bromate, and dalapon at trace levels in drinking water samples by tandem IC-MS/MS

Xin Zhang, Charanjit Saini, Chris Pohl, Yan Liu, Chris Shevlin (Presenting Author) Thermo Fisher Scientific, Sunnyvale, CA

INTRODUCTION

Haloacetic acids (HAAs) are disinfection by-products (DBPs) formed during the disinfection of drinking water using disinfectants such as chlorine or chloramine. Because of their suspected carcinogenicity, mutagenicity, as well as developmental, reproductive, and hepatic toxicity,¹⁻⁴ the World Health Organization (WHO)⁵ has established guidelines for these DBPs in drinking water.

The U.S. EPA and European Commission have established a regulatory maximum contaminant level (MCL) of 10 µg/L (10 ppb) bromate in drinking water.^{5,6} Dalapon, an herbicide, can cause minor kidney changes, when present in drinking water, well in excess of the MCL. The U.S.EPA has set an MCL, at 0.2 mg/L or 200 ppb.

In this study, we use a new ion exchange column (Thermo Scientific[™] Dionex[™] IonPac[™] AS31 column) for the IC-MS/MS determination of nine haloacetic acids. bromate, and dalapon present at low concentrations in drinking water. The new IC-MS/MS method can determine all analytes in water samples in 35 min, 39% faster than the original U.S. EPA Method 557. The direct detection of HAAs, bromate, and dalapon eliminates the tedious sample preparation described in U.S. EPA Method 552.3.

MATERIALS AND METHODS

Sample collection, preservation, and storage

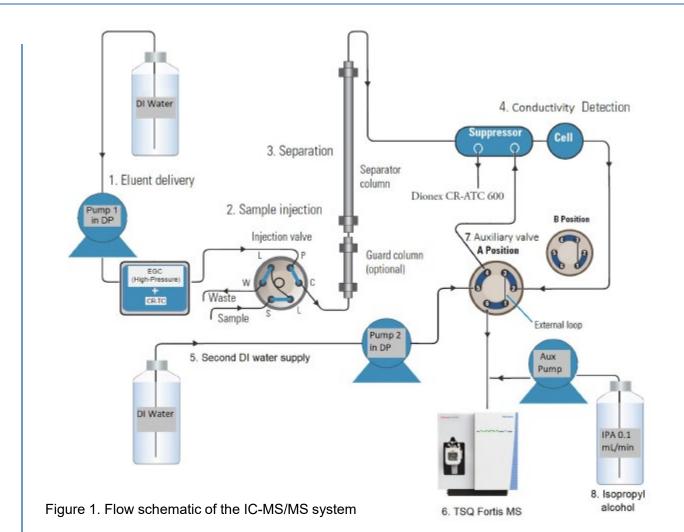
When water samples were collected, crystalline or granular ammonium chloride was added to the sample containers as a preservative to yield a concentration of 100 mg/L. For example, a 250 mL sample requires 25 mg of NH4Cl. Prior to analysis by IC-MS/MS, no further sample preparation was performed.

Lowest Concentration Minimum Reporting Level (LCMRL) and Method Detection Limits (MDL)

Standard solutions containing 11 target analytes (including nine HAAs, bromate, and dalapon) at 0.05, 0.1, 0.25, 0.375, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, and 2.00 µg/L with of each ISS at 4 µg/L in 100 mg/L NH4CI solution were prepared.

Quantification

Identification and quantification of the nine HAAs, bromate, and dalapon in ground water, municipal drinking water, and bottled water samples were accomplished by MS/MS identification and retention time match with the corresponding standards, and each sample was analyzed three times (n=3).


Instrumentation

Thermo Scientific[™] Dionex[™] ICS-6000

Thermo Scientific[™] TSQ Fortis[™] Triple Quadrupole Mass Spectrometer

Table 1. Conditions for IC-MS/MS

	lon chromatography	Mass	spe	
IC system	Dionex ICS-6000 system	Ionization interface	E	
MS detector	TSQ Fortis triple quadrupole mass		П	
	spectrometer	Divert valve switch	E	
Columns	Dionex IonPac AG31 Guard Column,	time	a	
	2 × 50 mm Dionex IonPac AS31 Analytical	Gas control	S	
	Column, 2 x 250 mm		U	
Eluent source	Dionex EGC 500 KOH Eluent	Sweep gas pressure	3	
Eldent addroe	Generator Cartridge with Dionex	Source voltage	-	
	CR-ATC 600 Continuously	Vaporizer temperature	2	
	Regenerated Anion Trap Column	Ion transfer tube	2	
Eluent	17-85 mM KOH with gradient: The	temperature		
	KOH concentration was maintained at	FWHM	0	
	17 mM for the first 7 min, then linearly increased to 85 mM within 11 min, and	CID gas	2	
	maintained at 85 mM for another			
	17 min.			
Flow rate	0.3 mL/min for both pumps in the DP			
Injection volume	100 µL	The Dionex ICS	_6(
Temperature	15 °C (column compartment),		-	
	20 °C (detector compartment)	with two analytic		
	10 °C (sampler compartment)	generator (EG),		
Detection	Suppressed Conductivity, Dionex	temperature micro		
Detection			~	
Derection	ADRS 600 Anion Dynamically	suppressor, and		
Dataction	Regenerated Suppressor (2 mm),	suppressor, and DI water is adde		
Detection	· · ·		d	
	Regenerated Suppressor (2 mm), legacy mode with constant current 64 mA	DI water is adde converted auton	d	
Background	Regenerated Suppressor (2 mm), legacy mode with constant current	DI water is adde	d	
Background	Regenerated Suppressor (2 mm), legacy mode with constant current 64 mA	DI water is adde converted auton	d	

ctrometric detection
ectrospray ionization (ESI), negative ode
uent to waste 0-5 min, 8.5-11.1 min, d 15.6-21.7 min
neath gas pressure: 50 arbitrary (Arb) hits Aux gas pressure: 10 Arb
Arb
200 V
′5 °C
25 °C
7 for both Q1 and Q3
0 mTorr

6000 system is equipped l pumps (DP), eluent utosampler, low obore column compartment, conductivity detector (CD). to the IC system and atically to hydroxide eluent

RESULTS

Table 2. Optimized MS instrumental and SRM conditions:

· · ·						
Compound	Precursor (m/z)	Product (m/z)	Collision energy (V)	Tube lens (V)	Source fragmentation (V)	
MCAA	92.9	35.1	9.7	79	14.6	
MCAA_IS	93.9	35.1	9.1	82	13.1	
DCAA	126.9	83.0	8.5	86	24.5	
Bromate	126.9	110.9	21.7	85	24.5	
DCAA_IS	128.0	83.9	8.4	84	13.1	
MBAA	136.9	78.9	8.7	86	9.8	
MBAA_IS	137.9	78.9	9.4	84	14.7	
Dalapon	140.9	96.9	7.7	84	13	
TCAA_IS	161.9	117.9	5.3	78	18	
BDCAA	162.8	80.9	8.6	79	22.9	
TCAA	162.8	118.9	5.3	79	22.9	
BCAA	172.8	128.9	9.6	89	22.8	
CDBAA	206.8	78.9	15.6	91	22.9	
DBAA	216.8	172.8	10.1	87	14.7	
TBAA	250.7	78.9	19.4	87	26.1	

The Dionex IonPac AS31 stationary phase is designed to provide faster sample analysis for HAAs, bromate, and dalapon yet still have high capacity to allow a large loop injection to maximize analyte sensitivity. As shown in Figure 2, the Dionex IonPac AS31 achieved 39% faster run times relative to the Dionex IonPac AS24 column (used in the experiments described in U.S. EPA Method 557) with equivalent resolutions.

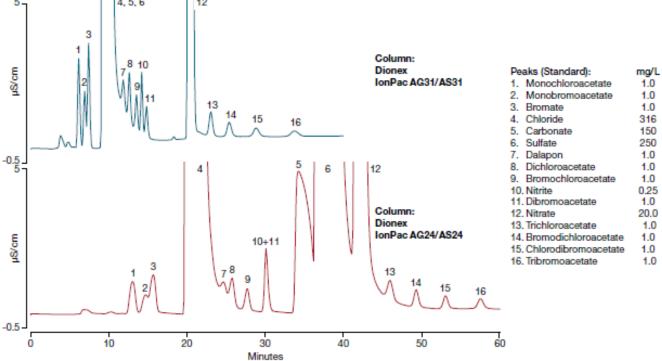


Figure 2. Separation of haloacetic acids, dalapon, and bromate in U.S. EPA Method 557 on the Dionex IonPac AS31 and Dionex IonPac AS24 columns (U.S. EPA 557 column) with conductivity detection

Table 3. Recovery and RSDs obtained for 2 µg/L and 10 µg/L HAAs spiked in three different matrixes: DI water, LSSM, and municipal drinking water (DW) (n=7)

	9	2 μg/L Spiked in						10 μg/L Spiked in					
Analytes	DI wa	ater	LSS	M	Munici	oal DW	DI wa	ater	LSSM		Municip	Municipal DW	
n=7	REC (%)	RSD	REC (%)	RSD	REC (%)	RSD	REC (%)	RSD	REC (%)	RSD	REC (%)	RSD	
MCAA	99.6	3.4	105	5.1	108	5.1	102	3.0	99.6	2.8	103	6.0	
MBAA	101	3.8	105	4.2	104	4.0	101	0.7	97.0	3.2	99.2	3.7	
Bromate	104	2.8	101	5.3	99.0	4.5	102	2.5	98.8	4.0	101	5.0	
Dalapon	104	1.8	99.2	3.2	103	4.0	102	1.3	91.6	3.1	98.2	3.1	
DCAA	110	1.8	110	2.0	107	2.0	101	2.0	100	2.7	90.7	3.3	
BCAA	104	2.4	107	4.1	93.6	3.2	104	2.0	97.6	4.0	89.3	3.2	
DBAA	102	0.6	101	2.8	94.8	2.2	101	1.4	90.1	3.0	91.4	4.2	
TCAA	102	6.7	106	8.6	98.1	5.4	95	3.0	93.5	4.8	99.2	3.3	
BDCAA	98.2	3.1	97.0	4.4	104	7.0	99.0	4.7	88.7	5.0	97.2	3.3	
CDBAA	92.0	6.7	93.3	7.3	108	5.7	98.1	4.2	90.9	3.3	106	3.0	
TBAA	92.0	3.7	98.4	7.4	103	5.7	104	5.7	86.7	4.4	100	6.4	

samples

	Concentration (μg/L) [Mean ± standard deviation, n=3]									
Analyte	Well water	BW vendor 1	BW vendor 2	Municipal 1 DW	Municipal 2 DW	Municipal 3 DW				
MCAA	ND	ND	ND	0.75 ± 0.06	ND	2.7 ± 0.1				
MBAA	ND	ND	ND	0.21 ± 0.02	0.13 ± 0.01	0.08 ± 0.004				
Bromate	ND	0.18±0.06	0.52±0.01	0.61 ± 0.01	0.12 ± 0.01	0.08 ± 0.005				
Dalapon	ND	ND	ND	ND	ND	0.29 ± 0.01				
DCAA	ND	ND	ND	3.7 ± 0.1	0.31 ± 0.04	12 ± 0.1				
BCAA	ND	ND	ND	2.8 ± 0.1	ND	2.4 ± 0.1				
DBAA	ND	ND	ND	1.2 ± 0.04	0.75 ± 0.04	0.34 ± 0.001				
TCAA	ND	ND	ND	0.45 ± 0.01	ND	4.5 ± 0.02				
BDCAA	ND	ND	ND	0.72 ± 0.01	ND	1.1 ± 0.1				
CDBAA	ND	ND	ND	0.48 ± 0.06	ND	ND				
TBAA	ND	ND	ND	ND	ND	ND				
HAA5	ND	ND	ND	6.4	1.2	20				
HAA9	ND	ND	ND	10.3	1.2	24				

ND: Non detectable

HAA5: Sum of 5 regulated HAAs: MCAA, DCAA, TCAA, MBAA, and DBAA HAA9: Sum of 9 HAAs

CONCLUSIONS

A fast, sensitive, and simple method was developed for direct analysis of nine HAAs, bromate, and dalapon in drinking water samples using IC-MS/MS without sample pretreatment. The unique selectivity of the Dionex IonPac AS31 column provides excellent separation of 9 HAAs, bromate, and dalapon from common interference anions such as chloride, sulfate, and carbonate in 35 min. The high sensitivity provided by the MS detection method made it possible to perform the direct injection of drinking water samples, thus eliminating the complexity and variabilities of sample preparation. The use of a hydroxide eluent generator and suppression in the Reagent-Free IC system provides a reliable, economic, and environmentally friendly platform for the separation and detection of HAAs, bromate, and dalapon.

REFERENCES

1. Linder, R.E.; Klinefelter, G.R.; Strader, L.F.; Suarez, J.D.; Roberts, N.L. Reprod. Toxicol. 1997, 11, 681

2. Melnick, R.L.; Nyska, A.; Foster, P.M.; Roycroft, J.H.; Kissling, G.E. Toxicology 2007,

230, 126. 3. Hunter III, E.S.; Rogers, E.; Blanton, M.; Richard, A.; Chernoff, N. Reprod. Toxicol. 2006,

21, 260. 4. Itoh, S.; Murakami, H.; Fukuhara, M.; Nakano, A. J. Water Supply Res. Technol.- Aqua.

2007, 56, 95. 5. World Health Organization, Guidelines for drinking-water guality - Volume 1: Recommendations, 3rd ed., Vol. 1, 2008.

6. U.S. Environmental Protection Agency, Stage 1 and Stage 2 Disinfectants and Disinfection Byproducts Rules Website, https://www.epa.gov/dwreginfo/ stage-1-and-stage-2-disinfectants-and-disinfection-byproducts-rules

TRADEMARKS/LICENSING

© 2019 Thermo Fisher Scientific Inc. All rights reserved. All trademarks are the property of Thermo Fisher Scientific and its subsidiaries. This information is not intended to encourage use of these products in any manner that might infringe the intellectual property rights of others.

Table 3. Determination of HAAs, bromate, and dalapon in different bottled water (BW) and drinking water (DW)

